
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

CVPR
#5751

CVPR
#5751

CVPR 2023 Submission #5751. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A. Broader Impact
The key result of this research could aid the GNN family since G-RNA is able to search for robust architectures for learning

graphs automatically. The proposed approach can simultaneously enhance the accuracy as well as the resilience to adversarial
assaults of GNNs, allowing them to be used in more safety-critical applications including power grids, financial transactions,
and transportation.

B. Additional Experimental Results
B.1. Defense Performance Against Target Attacks

Targeted attacks and non-targeted attacks are two vital branches of the adversarial attack field. In this section, we compare
our proposed methods to baselines under a targeted attack, Nettack [51], as a complement to defensive results under non-
targeted attacks. For each dataset, we choose 40 correctly classified nodes (10 nodes with highest margin, 10 nodes with the
lowest margin, and 20 nodes randomly) and report the average classification accuracy for these target nodes. Note that this
setting leads to higher reported accuracy than the typical accuracy evaluated on the whole test set. We conduct this experiment
for five runs and the defensive performance is shown in Table 4. It reads that G-RNA still outperforms the other baselines
almost across all datasets under the perturbed setting, while maintains on par performance on the clean graphs.

Table 4. Defensive performance on targeted nodes (mean in percentages) under targeted attacks Nettack. “-” indicates the result is unavailable due to the high
time complexity of the model.

Dataset Model GCN GCN-JK GAT GAT-JK GCN-Jaccard Pro-GNN GraphNAS G-RNA

Cora No Attack 93.25 94.75 94.75 92.25 98.50 97.50 96.00 94.95
Attack 16.75 16.25 19.25 23.75 46.25 50.00 25.75 51.25

Citeseer No Attack 88.00 86.25 91.00 88.25 95.25 92.50 96.25 92.50
Attack 14.75 12.50 17.25 14.75 22.00 45.00 9.00 60.00

PubMed No Attack 95.00 95.75 95.50 97.00 99.00 - 95.25 95.25
Attack 12.50 16.25 13.00 23.25 1.50 - 9.00 59.75

ogbn-arxiv No Attack 85.00 90.50 92.50 93.50 95.00 - 97.50 92.25
Attack 5.00 0.50 5.00 6.75 0.50 - 2.50 22.50

Amazon photo No Attack 96.25 98.25 89.50 98.50 99.75 - 97.50 94.50
Attack 12.50 8.00 12.00 28.50 9.00 - 5.00 32.50

B.2. Defense on Heterophily Graph

To better illustrate the effectiveness of our proposed method, we select one heterophily graph, Wisconsin and evaluate the
performance of G-RNA on it. Table 5 demonstrates the performance of various methods under both clean and perturbed data,
where 5% edges are manipulated by Mettack. We could find that even without the assumption of graph homophily, our method
could outperform other baselines under both settings.

Table 5. Experimental result on heterophily graph.

GCN GAT GCN-Jaccard

clean perturbed clean perturbed clean perturbed
50.55±1.69 48.95±2.16 52.40±2.22 52.1±2.20 53.60±3.32 52.15±2.06

Pro-GNN GraphNAS G-RNA
51.05±0.58 48.2±1.99 58.10±4.70 57.60±2.80 60.50±2.97 59.25±2.76

B.3. Details of Searched Architectures

The optimal searched architectures by G-RNA for each dataset are listed in Table 6. The optimal model depth searched is
2-layer for Cora and CiteSeer, and 3-layer for PubMed. All three architectures use NFS as the pre-processing adjacency mask.

11



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

CVPR
#5751

CVPR
#5751

CVPR 2023 Submission #5751. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

NIE is selected in the second layer for CiteSeer and Cora. Besides, LSTM is chosen to be the layer aggregator for Cora and
PubMed, while Concat is selected for CiteSeer.

Table 6. Searched architectures results.

Dataset Layer Intra-layer Operations Layer aggregator

Cora layer1: Skip [NFS, GAT-Cos, Sum, Identity]
LSTMlayer2: Skip [Identity, Identity, Sum, Identity]

CiteSeer layer1: None [NFS, Identity, Mean, SAGE]
Concatlayer2: Skip [NIE, GAT-Cos, Mean, SAGE]

PubMed
layer1: Skip [NFS, Identity, Mean, SAGE]

LSTMlayer2: None [NIE, Identity, Sum, GIN]
layer3: Skip [Identity, GAT-Sym, Mean, Identity]

ogbn-arxiv layer1: Skip [NFS, gat, Sum, GIN]
Concatlayer2: Skip [Identity, GAT-Sym, Sum, GIN]

Amazonphoto
layer1: Skip [NFS, GAT-Linear, Sum, GIN]

Concatlayer2: Skip [Identity, Identity, Sum, GIN]
layer3: Skip [Identity, GAT-Sym, Sum, Identity]

B.4. Sensitivity Analysis

To in-depth understand the effect of the hyper-parameter λ in the search process, we conduct an ablation study on sensitivity
of it. Figure 5 shows the performance for λ = 0.01, 0.05, 0.5 on Cora dataset. The experiments on the other datasets show
similar patterns. When λ is very small, e.g., 0.01, the performance on clean data is gratifying, but the performance drops fast
under adversarial perturbations. On the contrary, when λ is relatively large, e.g., 0.5, the prediction accuracy on clean graph
is poor, but the performance is stable even when the graph is heavily attacked. As a result, we need to properly balance the
accuracy and robustness tradeoff by choosing a suitable λ. In practice, we find that tuning λ in the range of [0.05, 0.3] usually
leads to satisfactory results.

Table 7. Recover existing GNN layers from our search space.

Method [OD,Oe,Oaggr,Ocomb,Oskip]

GCN [22] [Identity, GCN, Sum, Identity, None]

JK-Net [42] [Identity, GCN, Sum, Identity, Skip]

GAT [35] [Identity, GAT, Sum, Identity, None]

GIN [41] [Identity, Identity, Sum, GIN, None]

GraphSAGE [15] [Identity, Identity, Mean, SAGE, None]

GNN-Guard [44] [NIE, GCN, Sum, Identity, None]

VPN [20] [VPO, GCN, Sum, Identity, None]

Table 8. Commonly used correlation coefficient operations.

Oe Formula

Identity eidenij = 1

GCN egcnij = 1/
√

didj

GAT egatij = leaky relu(Wlhi +Wrhj)

GAT-Sym esymij = egatij + egatji

Cos ecosij =< Wlhi,Wrhj >

Linear elinij = tanh(sum(Wlhi))

Gene-Linear egeneij = Watanh(Wlhi +Wrhj)

B.5. Computational Efficiency Analysis

We also empirically demonstrate the computational efficiency of G-RNA in comparison with two comprehensive baselines,
GraphNAS and Pro-GNN, on Cora dataset in Table 9. Due to the usage of graph structure mask operations and the evolutionary
algorithm, our methods are not that efficient like darts-based NAS methods or plain robust GNN solution. However, we can
find that the computation cost of our G-RNA is comparable to GraphNAS. This lack of efficiency is consistent with one

12



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

CVPR
#5751

CVPR
#5751

CVPR 2023 Submission #5751. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

of the limitations that we claimed in Section 6, which is a shared issue for many NAS methods and we choose to leave its
improvement as a future work.

� � �� �� �� ��
���������������

��

��

	�


�

��
��
��
��
��
��

��
��

�

λ=0.01
λ=0.05
λ=0.5

Figure 5. Parameter sensitivity analysis for λ.

Table 9. Running time (hours) comparison on Cora dataset.

Pro-GNN GraphNAS G-RNA

0.22 4.12 2.23

C. Details of G-RNA

C.1. Examples of popular GNNs based on search space of G-RNA

Our search space could recover some classic and manually designed GNNs as well as state-of-the-art robust GNNs such as
GCN-SVD, GCN-Jaccard, GNN-Guard, and VPN.

C.2. Evolutionary search algorithm

Based on our proposed robustness metric, we adopt the evolutionary algorithm to search for the optimal robust architectures,
as shown in Algorithm 1. Inspired by biological evolution process, the evolutionary algorithm solves optimization problems by
mutation, crossover, and selection. The selection operation is conducted via a fitness function, which is set as ACCval(α) +
λR(α) in our algorithm. The inference function in Line 3 calculates the fitness score from the validation set.

Algorithm 1: Evolutionary Search Algorithm
Input: The maximum iteration number max iter, supernet weights W, the population size P , the mutation size s, the mutation

probability p, the crossover size n, the original graph G = (A,X), the perturbed adjacency matrices {A′
t, i = t, .., T}, the

number of optimal architectures k.
Output: The top-K architectures with the highest robustness metric.

1 candidates← initialize population(P ) ;
2 for iter = 1, ...,max iter do
3 Q← Inference(candidates,G, {A′

i});
4 Top-k ← Select top(Q, candidates, k);
5 Pcrossover ← Crossover(Top-k, n);
6 Pmutation ← Mutation(Top-k, s, p);
7 candidates← Pcrossover ∪ Pmutation;
8 Return Top-k

C.3. Correlation coefficient operations

For correlation coefficient operations, we follow the literature and the detailed formulas are given in Table 8.

D. Experimental Setup

In this section, we start with the dataset statistics then describe the implementing details for G-RNA and other baselines.

13



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

CVPR
#5751

CVPR
#5751

CVPR 2023 Submission #5751. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

D.1. Dataset

We mainly consider the semi-supervised node classification task on three citation graph datasets [33]1, including Cora,
CiteSeer, and PubMed. For each graph, we randomly select 10% nodes for training, 10% nodes for validation, and the rest
80% nodes for testing to be consistent with existing literature. Besides, we also evaluate the effectiveness of G-RNA on one
heterophily graph, one citation network from Open Graph Benchmark (OGB) [17] and a co-purchase network that intends to
predict the product category on Amazon [31]. The specific statistics for each dataset are shown in Table 10.

Table 10. Dataset statistics.

Dataset # Nodes # Edges # Features # Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
ogbn-arxiv 50,802 108,554 128 40
Amazon-photo 7,650 119,081 745 8
Winsconsin 251 499 1703 5

D.2. Baselines

In order to validate the effectiveness and robustness of our G-RNA, we compare it with state-of-the-art GNNs, manually-
designed robust GNNs, and Graph NAS methods:

• GCN [22]: Graph Convolution Network (GCN) is the pioneer of GNN and represents as a classic victim model against
adversarial attacks.

• GCN-JK [42]: GCN-JK combines GCN with jumping knowledge networks (JK-Net). JK-Net adds skip connections
among different hidden layers and adaptively learns node-wise neighborhood when aggregating node representations.

• GAT [35]: Graph Attention Network (GAT) utilizes self-attention mechanism to learn different weights for edges.

• GAT-JK [42]: GAT-JK is the combination of GAT and JK-Net. Again, We use GNNs and their JK-Net variants to study
the effect of JK-Net backbone.

• RGCN [49]: Robust Graph Convolutional Network (RGCN) is an attention-based defense model by treating node
representations as Gaussian distribution and assigning less attention to nodes with high variance.

• GCN-Jaccard [39]: GCN-Jaccard conducts edge pruning according to the jaccard similarity among node representations.
It is a simple yet effective pre-processing defensive baseline.

• Pro-GNN [21]: Based on the graph properties of sparsity, low rank, and feature smoothness, Property GNN (Pro-GNN)
learns parameters and purifies the adjacency matrix at the same time.

• GraphNAS2 [10]: GraphNAS serves as a baseline that validates the robustness of plain graph NAS under adversarial
attacks.

Except GraphNAS, we use the public implementation for all baselines via PyTorch Geometric (PyG) [9] and DeepRobust [25].

D.3. Parameter Settings

To search for the optimal robust GNNs, we firstly construct a supernet and train it afterwards. Then, we search with our
robustness metric using the weights of the trained supernet. At last, we retrain the top-3 selected architectures from scratch.
For the construction of supernet, we limit the maximum layer number as 3.

Since random attack is one simple yet effective attack method, we use random attack as our attack proxy and generate
10 perturbed graph (T = 5) with 5% perturbation rate. Meanwhile, it is easy to implement, so that we use it to evaluate the

1https://github.com/kimiyoung/planetoid/tree/master/data
2https://github.com/GraphNAS/GraphNAS

14



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

CVPR
#5751

CVPR
#5751

CVPR 2023 Submission #5751. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

robustness of architectures without the knowledge of the specific attacker. Some other attack algorithms could also be ultilized
to generate adversarial examples for the evaluation of robustness metric if some prior knowledge from the attacker is given.

For the proposed G-RNA, the supernet is trained for 1,000 epochs with a learning rate of 0.005 and a weight decay of 3e-4.
The linear dropout rate is fixed to 0.5, and the attention dropout rate is fixed to 0.6. λ is determined through grid-search and
selected as 0.05 for Cora, 0.25 for CiteSeer, and 0.2 for PubMed. For robust operations, the reconstruction rank for LRA is set
to 20, and the threshold for NFS operation is chosen as 0.01. We maintain the power order of VPO to be 2 for all datasets. In
the generic search algorithm, we set population size P = 50, mutation size s = 20, mutation probability p = 0.2, crossover
size n = 20, and optimal architecture number k = 10. After we finish the search, we continue to tune the hyper-parameters
using hyperopt3 with the following options to gain the best results:

• hidden size: {16, 32, 64, 128, 256}

• learning rate: {0.005, 0.01}

• weight decay: {5e-3, 1e-3, 5e-4, 1e-4}

• optimizer: {adam, adagrad}

• linear dropout: {0, 0.3, 0.5, 0.7}

• attention dropout: {0.5, 0.6, 0.7}

For all models, we train them on ogbn-arxiv for 500 epochs and on all the other datasets for 200 epochs. For vanilla GNNs,
we set the learning rate as 0.005 using the Adam optimizer. Other hyper-parameters are kept the same as the original papers.
For GNN-Jaccard, we tune the threshold for jaccard similarly from {0.01,0.02,0.03,0.04,0.05}. For RGCN, the hidden size is
tuned from {16, 32, 64, 128}. For Pro-GNN, we follow the original settings to fix the hidden size as 64 for Cora and CiteSeer.
The results of Pro-GNN for PubMed dataset is not available due to its high time complexity. For GraphNAS, we keep the same
setting as reported in the original paper. We ran all experiments on a single machine with a 16GB GeForce GTX TITAN X
GPU.

3https://github.com/hyperopt/hyperopt

15


